Two Novel Olean Triterpenoids from Celastrus hypoleucus

by Kui-wu Wang^a), Hong-xiang Sun^a)^b), Bin Wu^a), and Yuan-jiang Pan*^a)

a) Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China (phone: +86-571-87951264; fax: +86-571-87951264; e-mail: cheyjpan@css.zju.edu.cn)
 b) College of Animal Sciences, Zhejiang University, Hangzhou 310029, P. R. China

Two new triterpenoids, (3β) -olean-12-ene-3,23-diol (1) and (6α) -6-hydroxyolean-12-en-3-one (2) were isolated from the MeOH extract of the stalks of *Celastrus hypoleucus* (OLIV.) WARB., together with the seven known compounds $(3\beta,22\alpha)$ -3,22-dihydroxyolean-12-en-29-oic acid, β -amyrin and β -amyrin palmitate, wilforlide A, wilforlide B, palmitic acid, and β -sitosterol. Their structures were elucidated on the basis of spectroscopic data and, in the case of 2, by X-ray crystallography. Compound 1 showed moderate cytotoxicity against human cervical squamous carcinoma (Hela) cells.

Introduction. – Celastraceae plants have been the subject of continued and growing interest due to the range of biological activities shown by many members of this family [1–4]. Pharmaceutical studies and clinical practice have demonstrated that Celastraceae sesqui- and triterpenes possess notable antibacterial, antitumor, insect antifeedant, and cytoxic activities [5].

In this paper, we report the isolation and identification of the two novel triterpenes (3β) -olean-12-ene-3,23-diol (1) and (6α) -6-hydroxyolean-12-en-3-one (2) isolated from the MeOH extract of the stalks of *Celastrus hypoleucus* (OLIV.) WARB., a perennial creeping plant. Also isolated were the following known compounds: $(3\beta,22\alpha)$ -3,22-dihydroxyolean-12-en-29-oic acid [6], β -amyrin [7], wilforlide A [8], wilforilide B [8], β -amyrin palmitate [9], palmitic acid, and β -sitosterol.

Results and Discussions. – Compound **1**, isolated as white powder (m.p. $206-208^{\circ}$), showed a positive *Liebermann-Burchard* reaction, indicating a triterpene. The molecular formula was established as $C_{30}H_{50}O_2$ by FT-ICR-MS (m/z at 443.3888 ($[M+H]^+$, calc. 443.3884)) and NMR experiments. The IR spectrum showed OH and olefinic resonances at 3458 and 1629 cm⁻¹, respectively. From the six degrees of

unsaturation, it was, thus, concluded that **1** contained five rings. The assignments of all the ¹H- and ¹³C-NMR signals were successfully carried out with ¹H, ¹H-COSY, HMQC, and HMBC experiments (*Table 1*).

The 13 C-NMR and DEPT spectra (125 MHz, CDCl₃) of compound **1** allowed the assignment of 30 13 C signals to seven Me, eleven CH₂, and five CH groups, as well as seven quaternary C-atoms. The 1 H-NMR spectrum (500 MHz, CDCl₃) showed seven Me *singlets* at δ (H) 0.83 (Me(28)), 0.87 (Me(29) and Me(30)), 0.91 (Me(24)), 0.97 (Me(26)), 0.99 (Me(25)), and 1.13 (Me(27)). A *triplet* at δ (H) 5.18 (J = 4.8, H–C(12)) corresponded to the olefinic H-atom, which was correlated with the signal at δ (C) 121.9 (C(12)). The quaternary olefinic C(13)-atom appeared at δ (C) 145.4. These data and the molecular formula suggested that **1** was an olean-12-ene triterpene with two OH groups [10].

The resonance at $\delta(H)$ 3.44, 3.76 (2d, J=10.0 each), which was coupled to $\delta(C)$ 72.5 (t, C(23)), was assigned to the CH₂(23) moiety bearing an OH function. From the 1 H-NMR multiplicity, this OH group could only be located at one of the C-atoms in positions 23–30. The 13 C-NMR signals ascribable to C(3) to C(6), C(23), and C(24) were different from those in β -amyrin [7], and, in particular, the Me signal at $\delta(C)$ 11.6 (C(24)) attached to C(4) showed an upfield shift. The HMBC correlations from Me(23) to C(3) and C(24), as well as NOESY cross-peaks between H–C(23) and H–C(5) were observed, which supported a 23-OH group. Finally, the upfield shift of the C(24) signal confirmed the 3 β -configuration, a 3 α -OH group being expected to cause a higher shift for C(24) [10].

The resonance at $\delta(H)$ 3.65 (t), coupled with $\delta(C)$ 77.7 (d, C(3)), indicated that the second OH group was located at C(3), and its β -orientation was inferred from the coupling constant (J=7.5 Hz).

The C=C bond in compound **1** was established to be located between C(12) and C(13), as confirmed by HMBC correlations from H-C(9), H-C(11), and H-C(18) to C(12), and from H-C(9), H-C(11), H-C(5), and H-C(18) to C(13), as well as by 1 H, H-COSY correlations between H-C(11) and H-C(12). From all these data, compound **1** was identified as (3 β)-olean-12-ene-3,23-diol.

Compound **2**, isolated in crystalline form (m.p. $219-221^{\circ}$), showed a positive *Liebermann – Burchard* reaction. Its molecular formula was determined as $C_{30}H_{48}O_2$ by FT-ICR-MS (m/z at 441.3730 ([M+H]⁺, calc. 441.3727)) and NMR spectroscopy. The IR spectrum of **2** suggested the presence of OH, C=O, and C=C groups (3456, 1742, and 1635 cm⁻¹, resp.). The assignments of all ¹H- and ¹³C-NMR signals were successfully carried out with ¹H, ¹H-COSY, HMQC, and HMBC experiments (*Table 2*).

The ¹H-NMR spectrum of **2** showed signals corresponding to one vinyl H-atom at $\delta(H)$ 5.63 (t, J = 5.0 Hz, H-C(12)) and eight Me *singlets* at 0.83 (Me(28)), 0.86 (Me(25) and Me(29)), 0.88 (Me(30)), 1.02 (Me(26)), 1.20 (Me(27)), 1.34 (Me(23)), and 1.37 (Me(24)). The ¹³C-NMR and DEPT spectra of **2** showed a C=O signal at $\delta(C)$ 219.6, and olefinic resonances at 121.9 and 144.8. In addition, nine CH₂ and four CH groups were found, as well as six quaternary C-atoms. These data indicated that **2** was also an olean-12-ene triterpene [10].

The keto group was positioned at C(3) by considering the lowfield-shifted 13 C-NMR signals of C(2), C(3), and C(4), and the HMBC correlations from H-C(1), H-C(5), Me(23), and Me(24) to C(3), respectively. From the signal observed at $\delta(H)$

Table 1. NMR Data of Compound 1. In CDCl₃ at 500/125 MHz, resp.; δ in ppm, J in Hz.

Position	¹³ C	$^{1}\mathrm{H}$	¹ H, ¹ H-COSY	HMBC
1	38.5 (t)	1.01, 1.68		C(3), C(5), C(10), C(25)
2	27.4(t)	1.65	H-C(3)	C(1), C(3)
3	77.7 (d)	3.65 (t, J = 7.5)	H-C(2)	C(2), C(4), C(24)
4	42.1 (s)			
5	50.0(d)	0.84	H-C(6)	C(7), C(24), C(25)
6	18.8 (t)	1.42, 1.50	H-C(5)	C(5), C(7), C(8)
7	32.7(t)	1.35, 1.55		C(5), C(6), C(26)
8	40.0(s)			
9	47.9(d)	1.60		C(7), C(8), C(10), C(12), C(25), C(26)
10	37.1(s)			
11	23.7 (t)	1.93	H-C(12)	C(8), C(10), C(12), C(13)
12	121.9(d)	5.18 (t, J = 4.8)	H-C(11)	C(9), C(11), C(18)
13	145.4 (s)			
14	42.0(s)			
15	27.1(t)	0.78, 2.01		C(13), C(16), C(17)
16	26.4(t)	1.01, 1.73		C(14), C(15), C(17), C(28)
17	32.7(s)			
18	47.5(d)	2.00		C(12), C(13), C(14), C(28)
19	47.1 (t)	1.02, 1.68		C(13), C(17), C(18), C(21), C(30)
20	31.3(s)			
21	35.0 (t)	1.08, 1.38		C(17), C(19), C(20), C(22)
22	37.4 (t)	1.25, 1.46		C(17), C(18), C(20), C(21)
23	72.5(t)	3.44 (d, J = 10.0)		C(3), C(24)
		3.76 (d, J = 10.0)		
24	11.6(q)	0.91(s)		C(3), C(4), C(5)
25	16.1 (q)	0.99(s)		C(1), C(5), C(9), C(10)
26	17.1 (q)	0.97(s)		C(7), C(8), C(9), C(14)
27	26.2(q)	1.13 (s)		C(8), C(13), C(14), C(16)
28	28.6(q)	0.83(s)		C(16), C(17), C(18), C(22)
29	33.6 (q)	0.87(s)		C(19), C(20), C(21), C(30)
30	23.9(q)	0.87(s)		C(19), C(20), C(21), C(29)

3.94 (td, J = 10.4, 4.5 Hz, H–C(6)), which was correlated with δ (C) 68.0 (C(6)), and from the 1 H, H-COSY correlation between δ (H) 3.94 and 1.65 (H–C(5)), the OH group in **2** was positioned at C(6). The chemical shift of H–C(6) and the observed coupling constants (Table 2) pointed to α -configuration. This was consistent with deshielded resonances for C(5), C(6), and C(7) (δ (C) 59.0, 68.0, 43.4, resp.) compared to the known 6 β -isomer (δ (C) 56.1, 67.5, 45.1) [11]. Finally, the structure and absolute configuration of **2** were unequivocally confirmed by single-crystal X-ray diffraction 1), as shown in the *Figure*.

The known compounds $(3\beta,22\alpha)$ -3,22-dihydroxyolean-12-en-29-oic acid, β -amyrin, wilforlide A, wilforlide B, and β -amyrin palmitate were identified by comparison with literature data [6-9].

¹⁾ Crystallographic data (excluding structure factors) have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication number CCDC-257358. Copies of the data can be obtained, free of charge, on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (fax: +44-1223-336033; e-mail: data_request@ccdc.cam.ac.uk), or via the internet (http://www.ccdc.cam.ac.uk/products/csd/request).

Table 2. NMR Data of Compound 2. In CDCl₃ at 500/125 MHz, resp.; δ in ppm, J in Hz.

Position	13 C	^{1}H	¹ H, ¹ H-COSY	HMBC
1	39.2 (t)	1.63, 1.80		C(3), C(5), C(10), C(25)
2	33.3 (t)	2.28, 2.68		C(1), C(3)
3	219.6 (s)			
4	47.4(s)			
5	59.0 (d)	1.65	H-C(6)	C(4), C(6), C(10), C(25)
6	68.0 (d)	3.94 (td, J = 10.4, 4.5)	H-C(5), C(7)	C(5), C(7), C(8), C(10)
7	43.4(t)	1.63	H-C(6)	C(5), $C(6)$, $C(8)$, $C(9)$, $C(14)$, $C(26)$
8	42.3(s)			
9	47.5 (d)	2.00		C(8), C(10), C(11), C(12), C(13), C(25), C(26)
10	38.3(s)			
11	23.9(t)	1.93	H-C(12)	C(9), C(10), C(12), C(13), C(25), C(26)
12	121.9(d)	5.23	H-C(11)	C(9), C(11), C(14), C(18)
13	144.8 (s)			
14	41.0 (s)			
15	26.3(t)	1.90		C(13), C(27)
16	27.2(t)	2.02		C(15), C(17), C(28)
17	32.8(s)			
18	45.9(d)	1.68		C(12), C(13), C(19)
19	47.0(t)	1.62		C(13), C(17), C(18), C(20), C(21), C(30)
20	31.3(s)			
21	34.9(t)	1.15, 1.41		C(17), C(19), C(20), C(22)
22	37.3(t)	1.30, 1.46		C(16), C(17), C(20), C(28)
23	32.0(q)	1.34 (s)		C(3), C(4), C(5), C(24)
24	20.4(q)	1.37(s)		C(3), C(4), C(5), C(23)
25	17.5(q)	1.02(s)		C(1), C(5), C(9), C(10)
26	17.5(q)	1.02(s)		C(7), C(8), C(9), C(14)
27	26.0(q)	1.20(s)		C(8), C(13), C(14), C(15)
28	28.7(q)	0.83(s)		C(16), C(17), C(18), C(22)
29	33.5(q)	0.86(s)		C(19), C(20), C(21), C(30)
30	23.9(q)	0.88(s)		C(19), C(20), C(21), C(29)

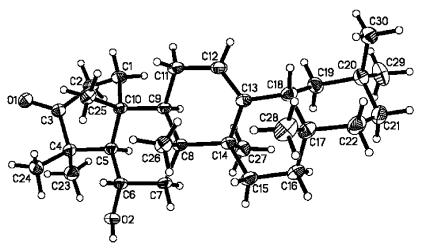


Figure. Single-crystal X-ray structure of compound 2

The new compounds **1** and **2** were tested for *in vitro* antitumor activity against human cervical squamous carcinoma (Hela) cells. Compound **1** showed moderate antitumor activity, with an IC_{50} value of 28.9 µg/ml relative to 5.6 µg/ml for cisplatin used as a positive control.

Experimental Part

General. TLC: Silica-gel plates (GF_{254} , Qingdao Haiyang Chemical Co. Ltd., Qingdao, China); detection by spraying with 10% H_2SO_4 in EtOH, followed by heating at 105° . Column chromatography (CC): silica gel (200-300 mesh). Melting points (m.p.): X_4 micro melting-point apparatus; uncorrected. IR Spectra: Nicolet NEXUS-470 FT-IR spectrometer, KBr pellets; in cm⁻¹. H- and 13 C-NMR Spectra: Bruker Avance DRX-500 spectrometer, at 500/125 MHz, resp.; δ in ppm rel. to Me₄Si as internal standard. FT-ICR-MS: Bruker Apex III spectrometer; in m/z. ESI-MS: Bruker Esquire- 3000^{plus} spectrometer.

Plant Material. The stalks of Celastrus hypoleucus (OLIV.) WARB were collected in Jiujiang, Jiangxi province, P. R. China, in September 2002. A voucher specimen was deposited at the Herbarium of the Jiujiang Forestry Institute (JJF), Jiangxi province, China, and identified by Prof. Hong-xiang Sun (Zhejiang University, Hangzhou, China).

Extraction and Isolation. Shade-dried powder (10 kg) of the stalks of C. hypoleucus was extracted at r.t. with MeOH (3×), with occasional stirring. After filtration and evaporation in vacuo, a gummy residue (514 g) was obtained, which was taken up in H_2O and extracted with petroleum ether (PE; 4×31) and AcOEt (4×31).

- a) The PE extract (103 g) was adsorbed on SiO₂ (100 g) and subjected to CC (1 kg SiO₂; PE/AcOEt 10:0 \rightarrow 0:10): 16 main fractions (Fr.). From Fr.1 and 2, β -amyrin and celastrol were obtained, resp. Fr. 3 (3 g) was rechromatographed (60 g SiO₂; PE) to afford β -sitosterol. Fr. 8 (4 g) was rechromatographed (80 g SiO₂; PE/acetone 5:1) to afford 2 (31.2 mg). Fr. 12 was rechromatographed (SiO₂; PE/acetone 3:1) to afford wilforlilde B.
- b) The original AcOEt extract (202 g) was adsorbed on SiO₂ (200 g) and chromatographed (3 kg SiO₂; CHCl₃/MeOH 10:0 \rightarrow 0:10): 15 main fractions. Fr. 4 afforded a solid material, which was recrystallized from acetone to give pure 1 (20.8 mg). Fr. 8 (3 g) was rechromatographed (60 g SiO₂; PE/AcOEt 3:1) to afford β -amyrin and wilforlide A.
- (3β) -Olean-12-ene-3,23-diol (1). Colorless powder. M.p. $206-208^{\circ}$. IR (KBr): 3458, 1629. 1 H- and 13 C-NMR: see *Table 1*. ESI-MS: 441 ([M-H] $^{-}$), 465 ([M+Na] $^{+}$). FT-ICR-MS: 443.3888 ([M+H] $^{+}$, $C_{30}H_{31}O_{2}^{+}$, calc. 443.3884).

 (6α) -6-Hydroxyolean-12-en-3-one (2). Colorless needles. M.p. 219 – 221°. IR (KBr): 3456, 1742, 1635. ¹H-and ¹³C-NMR: see *Table 2*. ESI-MS: 439 ([M – H] $^-$), 463 ([M + Na] $^+$). FT-ICR-MS: 441.3730 ([M + H] $^+$, C₃₀H₄₈O $_2^+$; calc. 441.3727).

Antitumor Assay. The cytotoxicities of **1** and **2** towards human cervical squamous carcinoma (Hela) cell were tested as follows. The Hela cells were cultured at 37° under a humidified atmosphere of 5% CO₂ in RPMI-1640 medium supplemented with 10% fetal calf serum, and dispersed in replicate 96-well plates (5×10^{4} cells/well) for 48 h. Compounds **1** and **2** (1.25-200 µg/ml) or cisplatin (pos. control) were then added. After 48 h of exposure to the toxins, cell viability was determined by the MTT²) colorimetric assay [12] by measuring the absorbance at λ_{max} 570 nm with an ELISA reader. Each test was performed in triplicate (n=3).

REFERENCES

- [1] R. Bruning, H. Wagner, Phytochemistry 1978, 17, 1821.
- [2] Y. Q. Tu, J. Chem. Soc., Perkin Trans. 1 1991, 425.
- [3] Y. Q. Tu, J. Nat. Prod. 1990, 53, 915.
- [4] Y. Jiang, P. Li, S. Luo, Zhongcaoyao 1996, 27, 231.
- [5] P. D. Chen, J. Y. Liang, Strait Pharm. J. 1999, 11, 3.
- [6] G. M. Pang, C. J. Zhao, H. Hori, S. Inayama, Acta Pharm. Sinica 1989, 24, 75.
- [7] S. A. Knight, Org. Magn. Reson. 1974, 6, 603.
- [8] G. W. Qing, X. M. Yang, W. H. Gu, Acta Chim. Sinica 1982, 40, 637.
- [9] J. P. Chavez, I. D. Santos, F. G. Cruz, J. M. David, *Phytochemistry* 1996, 41, 941

 $^{^2}$) MTT = 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide.

- [10] B. M. Shashi, P. K. Asish, *Phytochemistry* **1994**, *37*, 1517.
 [11] H. X. Sun, J. X. Zhang, Y. P. Ye, Y. J. Pan, Y. M. Shen, *Helv. Chim. Acta* **2003**, *86*, 2414.
 [12] R. Aquino, F. De Simeone, F. F. Vincieri, C. Pizza, *J. Nat. Prod.* **1990**, *53*, 559.

Received January 26, 2005